Sixth Semester B.E. Degree Examination, June / July 2014 Antennas and Propagation

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define the following terms with respect to antenna:
 - i) Gain
- ii) Isotropic radiator
- iii) Beam area
- iv) Radiation resistance.

(08 Marks)

- b. Prove that maximum effective aperture for a $\frac{\lambda}{2}$ antenna is $0.13\lambda^2$.
- (06 Marks)
- c. The effective apertures of transmitting and receiving antennas in a communication system are $8\lambda^2$ and $12\lambda^2$ respectively, with a separation of 1.5 km between them. The e.m. wave is travelling with a frequency of 6 MHz and the total I/P power is 25 KW. Find the power received by the receiving antenna. (06 Marks)
- 2 a. Derive an expression for power radiated from an isotropic point source with "sine squared power pattern". Also find directivity "D" and draw power pattern. (06 Marks)
 - b. Find the power radiated and directivity for the unidirectional point sources, having the following point sources power patterns:
 - i) $U = U_m \cos^2 \theta \sin^3 \phi$, $0 \le \theta \le \pi$, $0 \le \phi \le \pi$
 - ii) $U = U_m \sin^2 \theta \sin^3 \phi$, $0 \le \theta \le \pi$, $0 \le \phi \le \pi$

(06 Marks)

- c. Eight point sources are spaced $\frac{\lambda}{6}$ apart. They have a phase difference of $\frac{\pi}{3}$ between adjacent elements. Obtain the field pattern. Also find BWFN and HPBW. (08 Marks)
- 3 a. Show that the radiation resistance of a half wave $\left(\frac{\lambda}{2}\right)$ dipole antenna is 73 Ω . (06 Marks)
 - b. Write an explanatory note on folded dipole antenna, giving neat figures. (06 Marks)
 - c. A magnetic field strength of 20 μ A/m is required to be produced at a point 2.5 km from the antenna in the broadside plane, in free space. How much power is transmitted by,
 - i) a hertzian dipole, with $l = \frac{\lambda}{15}$.
 - ii) a half wave dipole and
 - iii) a monopole antenna.

(08 Marks)

- 4 a. Discuss the features of a loop antenna. Derive an expression for the far field components of a loop antenna. (10 Marks)
 - Explain Babinet's principle with illustrations. Discuss features of complementary antennas, with neat figures.

PART - B

- 5 a. With a neat figure, explain the working of Yagi-Uda antenna. Write the design formulae for different components, used in Yagi-Uda antenna. Also mention the applications of Yagi-Uda antennas.

 (08 Marks)
 - b. Determine:
 - i) The length L aperture ' a_H ' and half angles in E and H planes for a pyramidal Horn antenna, for which $a_E = 10 \lambda$. The horn is fed with a rectangular wave guide in TE_{10} mode.

Let $\delta = \frac{\lambda}{12}$ in the E-plane and $\delta = \frac{\lambda}{6}$ in the H-plane.

ii) Calculate directivity 'D'.

(08 Marks)

c. Write a note on Corner Reflector antenna.

(04 Marks)

- 6 a. Write notes on:
 - i) Plasma antenna.
 - ii) Embedded antenna.

(08 Marks)

b. With a neat sketch, explain the principle of lens antenna.

- (06 Marks)
- c. A paraboloid reflector of 2 m diameter is used at 10 GHz. Calculate the beam width between first nulls (BWFN) HPBW and gain in dB. (06 Marks)
- 7 a. Discuss various forms of radio-wave propagation.

(08 Marks)

- b. Derive the expression for resultant electric field strength (E_R) at a point, due to space wave propagation. (06 Marks)
- c. Derive the expression for 'Line of sight' distance (LOS) between transmitting and receiving antennas. (06 Marks)
- 8 a. A high frequency radio link is to be established between two points on the earth 350 km apart. The reflection region of the atmosphere is at a height of 250 km and has a critical frequency of 8 MHz. Calculate the maximum usable frequency (MUF), for the given path in case of flat earth.

 (06 Marks)
 - b. Define skip distance. Derive an expression for skip distance (D), for a flat earth. (06 Marks)
 - c. Define critical frequency. Find the critical frequency for a particular ionospheric layer with Nm = 9×10^6 /cm³. Also find maximum usable frequency (MUF), if the angle of incidence \angle i= 60° .

* * * * *